CAN WE IMPROVE WIND FORECASTING USING CONFORMAL PREDICTIONS?

Conform with the wind

Simon Althoff Johan Hallberg Szabadváry Jonathan Anderson Lars Carlsson

September 13, 2023

Ensemble post processing

Ensemble post processing

Ensemble post processing

- Parametric method (EMOS)
- Neural networks
- Quantile regression (forest)
- Conformal?

- Predictive maintenance and safety of wind turbines
- Electricity pricing
- etc.

Ensemble variables

• x-wind-10m, y-wind-10m

Ensemble variables

- x-wind-10m, y-wind-10m
- surface-pressure
- air-temperature
- wind-speed-of-gust

Ensemble variables

- x-wind-10m, y-wind-10m
- surface-pressure
- air-temperature
- wind-speed-of-gust

Deterministic forecast

Ensemble variables

- x-wind-10m, y-wind-10m
- surface-pressure
- air-temperature
- wind-speed-of-gust

Deterministic forecast

Measurement Data

Measurements from SMHI¹

© OpenStreetMap

¹Swedish Meteorological and Hydrological Institute

Measurement Data

Measurements from SMHI¹

 \bigcirc OpenStreetMap

¹Swedish Meteorological and Hydrological Institute

Measurement Data

Measurements from SMHI¹

 $\textcircled{C} \mathsf{OpenStreetMap}$

¹Swedish Meteorological and Hydrological Institute

Crepes² used for implementation.

Non-conformity score: nearest neighbors

$$\alpha_i = \frac{y_i - \hat{y}_i}{\kappa_i + \gamma}$$
$$\Pi_n = \hat{y}_n + (\kappa_n + \gamma)\vec{\alpha}$$

²Developed by Prof. H. Boström

Non-exchangeable conformal prediction

Based on article from Barber et. al.

Exponential weight decay in time:

$$\omega_i = \lambda^{n-i}, \lambda \in [0,1]$$

Non-conformity scores as:

$$\alpha_i = |y_i - \hat{y}_i| (1 + \beta^T \hat{\sigma}[\mathbf{x}_i])$$

Resulting predictive interval:

$$\hat{C}_{n} = \hat{y}_{i} \pm \frac{1}{\left(1 + \beta^{T} \hat{\sigma}[\mathbf{x}_{i}]\right)} \left(\mathbf{Q}_{1-\epsilon} \left(\sum_{i=1}^{n-1} \tilde{\omega}_{i} \cdot \delta_{\alpha_{i}} + \tilde{\omega}_{n} \cdot \delta_{+\infty} \right) \right)$$

Test setting:

Test setting:

Model selection: sequential leave one out Test setting:

Model selection: sequential leave one out

Model selection: block selection

CPDS	Input Variables	Window length	Used in test
1		all	0.445
	x-wind	200	0.131
	y-wind	100	0.287
		50	0.134

Table: Parameters and inputs in one model configuration and the ratio of each parameter used in prediction

Results: Prescribed 0.5 validity

 Conformal prediction provides an interesting opportunity for computationally efficient and calibrated ensemble post processing.

- Conformal prediction provides an interesting opportunity for computationally efficient and calibrated ensemble post processing.
- Seems to do well despite external model.

- Conformal prediction provides an interesting opportunity for computationally efficient and calibrated ensemble post processing.
- Seems to do well despite external model.
- Include input variables in model selection.

- Conformal prediction provides an interesting opportunity for computationally efficient and calibrated ensemble post processing.
- Seems to do well despite external model.
- Include input variables in model selection.
- More metrics and further comparisons should be made.